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Abstract—A regio- and stereoselective route from the cis-oriented epoxytriflate pentoses 1 and 4 via 4-amino-4-deoxy sugars 2 and
5 to chiral thiazoline derivatives 3a–e and 6a–e in high yields is described. © 2001 Elsevier Science Ltd. All rights reserved.

Thiazolines have very significant biochemical interest
owing to the fact that they represent substructures of
a variety of biologically active natural products,1,2 or
they can serve as precursor molecules to other
functionalities3 and are also potent (NAGases)
inhibitors.4

Starting with the chiral synthons benzyl 2,3-anhydro-4-
O-trifyl-b-L-ribopyranoside (1) and benzyl 2-anhydro-
4-O-trifyl-a-D-ribopyranoside (4) leading to novel
chiral heterocyclic systems, is one of our interests in this
field.5 Herein we report for the first time an access to
stereochemically pure 2-thiazolines of type 3 and 6
using an arabinose derived chiral auxiliary.

The strategy banks on the introduction of an amino
group adjacent to the oxirane ring which upon reaction

with p-substituted phenylisothiocyanates affords the
corresponding thiazoline ring in one step. The reaction
of epoxy triflate 1 with gaseous ammonia was carried
out in acetone at −10°C to afford benzyl 2,3-anhydro-4-
deoxy-a-D-lyxopyranoside (2) in 85% yield.6 The latter
amino sugar 2 was allowed to react with p-substituted
phenyl isothiocyanates in dichloromethane to afford
the corresponding thiazoline derivative 3a–e in 72–81%
isolation yields after purification using column chro-
matography (Scheme 1). The intermediate is pre-
sumably a thioureido derivative, which leads to an
opening of the epoxy ring by the participation of the
sulfur atom. However, the thioureido intermediates
could not be isolated despite numerous attempts. The
same methodology was applied to the a-D isomer 4, to
afford the corresponding chiral thiazolines 6a–e in 75–
79% yields (Scheme 2).

Scheme 1. Synthesis of thiazoline derivatives from the b-L-anhydro triflate sugar.
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Scheme 2. Synthesis of thiazoline derivatives from the a-D-anhydro triflate sugar.

The 13C NMR of all new compounds show a quater-
nary carbon resonance at about 161–162 ppm, indica-
tive for the imine bond formation (C�N).7 The C-3 and
C-4 arise at 50–52 and 62–65 ppm, respectively. Fur-
thermore, the two-dimensional experiments (HMBC,
HMQC and H/H COSY) for compound 3a enables us
to the exact assignment of the whole skeleton. Thus,
H/H COSY shows H-1 (d=4.3 ppm, J1,2=7.3 Hz)
coupled to H-2 (d=3.67 ppm, J1,2=7.3 and J2,3=9.8
Hz). The latter proton is directly connected to C-2
(d=73.3 ppm) as shown in the HMQC spectrum, indi-
cating for a C�O bond resonance. Furthermore, H-3
(d=3.43 ppm, J2,3=9.8 and J3,4=6.1 Hz) is directly
connected to C-3 (d=52.1 ppm) characteristic chemical
shift for C�S bond in similar systems.8 The structure of
compound 3b was confirmed by single-crystal X-ray
analysis.9

Extensive 1H NMR studies enabled the unambiguous
conformation of the stereochemistry of the compounds
3a–e. A silent feature of the 1H NMR spectra of these
compounds is their chemical shifts and the coupling
constant of H-1 (d=4.24–4.30 ppm; J=7.3 Hz), indi-
cating an axial–axial relationship between H-1 and H-2,
1C4 conformation for these compounds is also sup-
ported by the axial–axial relationship between H-2 and
H-3 (J=9.2–9.8 Hz). In the other series 6a–e, the main
factor is the coupling constants between H-2/H-3. In all
compounds the J2,3 are 9.5–9.8 Hz, indicating axial–
axial relationship, therefore 4C1 is the predominant
conformation

In summary, the chiral thiazoline derivatives 3a–e and
6a–e, which are key intermediates for the synthesis of
natural products,10–12 can easily be obtained from the
corresponding amino sugars 2 and 5, respectively.
These new derivatives are not only of interest for their
biological activities, but can also be further modified or
integrated into other structural frameworks.13–15
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14. Data for 3a; [a ]20
D=−69.4° (c=0.1, CH2Cl2), 1H NMR

(250 MHz, CDCl3): dH 7.04–7.36 (m, 10H, C6H5, C6H5% ),
5.11 (bs, 1H, N-H), 4.88 (d, J=11.6 Hz, 1H, OCHHPh),
4.58 (d, J=11.6 Hz, 1H, OCHHPh), 4.30 (d, J=7.3 Hz,
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1H, H-1), 4.25 (dd, J=2.4, 12.8 Hz, 1H, H-5), 4.03 (m,
1H, H-4), 3.67 (dd, J=7.3, 9.8 Hz, 1H, H-2), 3.62 (dd,
J=3.4, 12.2 Hz, 1H, H-5%), 3.43 (dd, J=6.1, 9.8 Hz, 1H,
H-3). dC (63 MHz, CDCl3): 52.1 (C-3), 64.7 (C-4), 64.6
(C-5), 70.6 (OCH2Ph), 73.3 (C-2), 102.2 (C-1), 121.4,
124.4, 128.1–129.1, 137.0, 143.3 (C6H5, C6H5% ), 162.2 (C-
7). FAB-MS: m/z=357.1 [M++1]. Data for 3b; [a ]20

D=
−60.9° (c=0.14, CH2Cl2); 1H NMR (250 MHz, CDCl3):
dH 7.26–7.30 (m, 5H, C6H5), [7.08 (d, J=8.9 Hz, 2H),
7.16 (d, J=8.9 Hz, 2H), (C6H4)], 4.85 (d, J=11.6 Hz, 1H,
OCHHPh), 4.53 (d, J=11.3 Hz, 1H, OCHHPh), 4.25 (m,
1H, H-5), 4.24 (d, J=7.3 Hz, 1H, H-1), 4.10 (m, 1H,
H-4), 3.67 (dd, J=3.1, 12.8 Hz, 1H, H-5%), 3.62 (dd,
J=7.9, 9.2 Hz, 1H, H-2), 3.38 (dd, J=5.8, 9.8 Hz, 1H,
H-3). Data for 3c; [a ]20

D=−68.6° (c=0.1, CH2Cl2); 1H
NMR (250 MHz, CDCl3): dH 7.29–7.36 (m, 5H, C6H5),
6.87–7.07 (m, 4H, C6H4), 4.89 (d, J=11.6 Hz, 1H,
OCHHPh), 4.59 (d, J=11.6 Hz, 1H, OCHHPh), 4.30 (d,
J=7.3 Hz, 1H, H-1), 4.08 (bd, J=12.8 Hz, 1H, H-5),
3.90 (bs, 1H, H-4), 3.68 (dd, J=7.6, 9.8 Hz, 1H, H-2),
3.58 (dd, J=1.8, 12.5 Hz, 1H, H-5%), 3.38 (dd, J=5.8, 9.5
Hz, 1H, H-3). Data for 3d; [a ]20

D=−80.0° (c=0.05,
CH2Cl2); 1H NMR (250 MHz, CDCl3): dH 7.29–7.35 (m,
5H, C6H5), [6.74 (d, J=8.9 Hz, 2H), 7.01 (d, J=8.9 Hz,
2H), C6H4], 5.61 (bs, 1H, N-H), 4.86 (d, J=11.6 Hz, 1H,
OCHHPh), 4.58 (d, J=11.6 Hz, 1H, OCHHPh), 4.29 (d,
J=7.3 Hz, 1H, H-1), 4.07 (dd, J=2.4, 12.8 Hz, 1H, H-5),
3.90 (m, 1H, H-4), 3.66 (dd, J=7.3, 9.5 Hz, 1H, H-2),
3.53 (dd, J=3.4, 12.8 Hz, 1H, H-5%), 3.36 (dd, J=6.1, 9.5
Hz, 1H, H-3). Data for 3e; [a ]20

D=−96.8° (c=0.06,
CH2Cl2); 1H NMR (250 MHz, CDCl3): dH 7.31–7.36 (m,
5H, C6H5), [7.05 (d, J=8.9 Hz, 2H), 7.10 (d, J=8.9 Hz,
2H), C6H4], 4.90 (d, J=11.6 Hz, 1H, OCHHPh), 4.59 (d,
J=11.6 Hz, 1H, OCHHPh), 4.31 (d, J=7.3 Hz, 1H,
H-1), 4.27 (m, 1H, H-5), 4.08 (m, 1H, H-4), 3.69 (m, 2H,
H-2, H-5%), 3.43 (dd, J=5.8, 9.8 Hz, 1H, H-3).

15. Data for 6a; [a ]20
D=+135.2° (c=0.16, CH2Cl2); 1H NMR

(250 MHz, CDCl3): dH 6.87–7.40 (m, 10H, C6H5, C6H5),
4.9 (d, J=3.4 Hz, 1H, H-1), 4.77 (d, J=11.9 Hz, 1H,
OCHHPh), 4.69 (bs, 1H, N-H), 4.53 (d, J=11.6 Hz, 1H,
OCHHPh), 4.05 (m, 1H, H-4), 3.92 (m, 2H, H5, H5% ), 3.76
(dd, J=3.7, 9.8 Hz, 1H, H-2), 3.59 (dd, J=5.5, 9.8 Hz,
1H, H-3). Data for 6b; [a ]20

D=+137.1° (c=0.25, CH2Cl2);
1H NMR (250 MHz, CDCl3): dH 7.27–7.38 (m, 5H,
C6H5), [7.20 (d, J=8.9 Hz, 2H), 6.99 (d, J=8.9 Hz, 2H),
C6H4], 5.38 (bs, 1H, N-H), 4.87 (d, J=3.4 Hz, 1H, H-1),
4.74 (d, J=11.6 Hz, 1H, OCHHPh), 4.49 (d, J=11.6 Hz,
1H, OCHHPh), 3.91 (bd, J=4.0 Hz, 1H, H-4), 3.66–3.84
(m, 3H, H-5, H-5%, H-2), 3.52 (dd, J=5.2, 9.8 Hz, 1H,
H-3). Data for 6c; [a ]20

D=+156.8° (c=0.21, CH2Cl2); 1H
NMR (250 MHz, CDCl3): dH 7.29–7.39 (m, 5H, C6H5),
6.89–7.08 (m, 4H, C6H4), 5.09 (bs, 1H, N-H), 4.92 (d,
J=3.4 Hz, 1H, H-1), 4.77 (d, J=11.6 Hz, 1H,
OCHHPh), 4.52 (d, J=11.6 Hz, 1H, OCHHPh), 3.99
(bd, J=4.6 Hz, 1H, H-4), 3.81–3.90 (m, 2H, H-5, H-5%),
3.78 (dd, J=3.4, 9.8 Hz, 1H, H-2), 3.55 (dd, J=5.2, 9.8
Hz, 1H, H-3). Data for 6d; [a ]20

D=+113.8° (c=0.18,
CH2Cl2); 1H NMR (250 MHz, CDCl3): dH 7.21–7.30 (m,
5H, C6H5), [6.98 (d, J=8.9 Hz, 2H), 6.74 (d, J=8.8 Hz,
2H), C6H4], 4.85 (d, J=3.4 Hz, 1H, H-1), 4.70 (d, J=
11.9 Hz, 1H, OCHHPh), 4.46 (d, J=11.6 Hz, 1H,
OCHHPh), 3.93 (bd, J=5.2 Hz, 1H, H-4), 3.81 (bs, 2H,
H-5, H-5%), 3.71 (dd, J=9.5, 3.7 Hz, 1H, H-2), 3.70 (s,
3H, C6H4OCH3), 3.49 (dd, J=9.8, 5.5 Hz, 1H, H-3).
Data for 6e; [a ]20

D=+124.9° (c=0.28, CH2Cl2); 1H NMR
(250 MHz, CDCl3): dH 7.27–7.39 (m, 5H, C6H5), [7.06 (d,
J=8.2 Hz, 2H), 6.99 (d, J=8.4 Hz, 2H), C6H4], 5.01 (bs,
1H, N-H), 4.89 (d, J=3.4 Hz, 1H, H-1), 4.75 (d, J=11.6
Hz, 1H, OCHHPh), 4.51 (d, J=11.6 Hz, 1H, OCHHPh),
3.95 (bd, J=5.2 Hz, 1H, H-4), 3.83 (bs, 2H, H-5, H-5%),
3.76 (dd, J=3.4, 9.8 Hz, 1H, H-2), 3.54 (dd, J=5.2, 9.8
Hz, 1H, H-3), 2.29 (s, 3H, C6H4CH3).
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